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The purpose of the paper was to show an idea how numerical simulations of 
flow around a stationary irregularly shaped body can be used to estimate 
instability of the body during a real-world motion of such a body (e.g. a metal 
fragment). To the best of our knowledge, there is no evidence that such an 
analysis is available in literature for irregularly shaped bodies. The novelty is 
in the introduced method for the stability analysis and the fact that a real-
world fragment shape was digitized and used for the analysis. However, the 
disadvantage is in necessity that real fragments need to be scanned and 
digitized for the analysis, but the future work should give improvements in 
this direction. The focus was on the rotational part of the motion, particularly 
on obtaining the period of the motion when the body rotates, but the solving 
for angles of rotation was not the objective. We showed an idea on how to 
estimate the period of instability when continuous rotation occurs after the 
initial projection of the fragment. We assumed that relatively high angular 
velocity occurs at the initial condition (initial projection of the fragment), 
which provided an opportunity to assume further that the axis of rotation 
remains unchanged during the motion. By analyzing the kinetic energy of 
rotation, we estimated the period of body rotation until it reached a stable 
orientation during the high velocity motion.  To employ this approach that 
uses the mechanical energy, it was necessary to obtain the work done by the 
(aerodynamic) moments of resistance forces about the center of mass. These 
resistance (aerodynamic) moments were obtained for various orientations of 
the body using simulations of fluid flow around the real geometry of the 
body, which was obtained by scanning a real-world fragment, digitizing it, 
and importing it in a CAD software, which provided the inertial properties 
through moments of inertia. At each rotation, the kinetic energy of rotation is 
dissipated through work of the aerodynamic moment which was the basis for 
calculation when the body takes a steady orientation for the rest of the 
motion. 
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1. Introduction 

*Aerodynamic forces and moments are the results 
of the distribution of pressure and tangential stress 
on the surface of the body moving through the 
atmosphere. The main goal of aerodynamics is to 
determine the pressure and the tangential stress for 
given body shape and free flow conditions, and with 
the help of obtained values-determination of 
aerodynamic forces and moments (Anderson, 1991). 

The total effect of pressure and tangential stress, 
integrated across the entire surface of the body, is 
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the resultant aerodynamic force of 𝐹⃗𝑎𝑒𝑟𝑜 and the 

resultant moment 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜. The resultant force acts in 
the center of pressure, whereby in general case the 
center of mass of a body is not in the center of 
pressure. The resulting moment acts in the center of 
the mass of a body and causes its instability 
regarding the body orientation during the high-
velocity motion. 

Motion of irregular shape bodies at high 
velocities through the atmosphere is complex and 
generally difficult for analysis.  

Examples of such bodies include fragments of 
high explosive devices (projectiles, bombs, 
improvised explosive devices), shrapnel generated 
by fractures of various structures due to the effects 
of strong storms, meteoroids (smaller stones or 
metal bodies from the space), comets (icy bodies 
from the outer part of the solar system), asteroids 
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(larger bodies of different structures that also come 
from the solar system). 

While fragments of high explosive devices move 
at initial velocities of 2 to 6 Mach (dimensional 
quantity representing the ratio of flow velocity past a 
boundary to the local speed of sound), meteoroids, 
comets and asteroids move at considerably higher 
velocities when entering the atmosphere (about 50 
Mach and more). 

Irregular shape bodies that are moving with high 
velocities are characterized by viscous and 
compressible fluid flow, dominant resistance due to 
pressure drag, shock waves, turbulent flow, and by a 
significant separation of the boundary layer from the 
surface of the body during movement (Buresti, 
2000). 

A review of the literature showed that this topic 
was not adequately researched. Regarding the 
problem of stability of the body, researchers mainly 
deal with axisymmetric bodies (projectiles, rockets, 
truncated cones, cones with cylindrical bodies, etc.). 
There is no evidence that the problem of the stability 
of the orientation of the body with an irregular shape 
is analyzed and adequately solved. 

In this paper, an analysis of initial instability of 
irregularly shaped bodies with high velocities is 
performed. Analytical methods (physical model) and 
numerical simulation methods were used. 

2. The physical model 

Initial instability of irregularly shaped bodies (an 
example given in Fig. 1) with high velocity occurs 
due to the eccentric action (does not act in the center 
of mass) of the force that causes their movement.  

An example is the fragments created by 
detonation of high explosive projectiles. Due to the 
detonation of explosive charge in the projectile, 
pressure increases within the body (up to 400 000 
bar), in a very short period of time (order of s).  

The effect of the detonation products on the body 
of the projectile can be considered as an impulse 
load. The body of projectile begins to expand and 
cracks begin to emerge. When the internal pressure, 
due to the expansion of the detonation products, 
exceeds structural resistance of the body, the 
fragmentation of projectile body leads into a large 
number of irregularly shaped bodies, each body 
having a different shape (stochasticity of the 
process). Due to the nonuniform effect of the product 
of detonation pressure force, the fragments have 
always an initial angular velocity which generally 
has its axis of rotation oriented arbitrarily in the 
space. 

In order to determine the minimum value of the 
initial angular velocity of the irregularly shaped 
body, which ensures its continuous rotation, it is 
necessary to assess the values of the aerodynamic 
moment acting on the body in the initial phase of 
movement, and accordingly from the expression of 
the body kinetic energy of the rotation to determine 
the required angular velocity threshold. 

During the motion, the kinetic energy of rotation 

dissipates through the work of𝑀⃗⃗⃗𝑎𝑒𝑟𝑜, until it meets 
the threshold equal to the total work of the 
aerodynamic moment on a single rotation. The idea 
is to determine the rotational kinetic energy 
threshold by numerical integration using 
aerodynamic moment values obtained using 
simulations for various fragment orientations and 
use the threshold to estimate the time frame of 
continuous rotation before the fragment takes a 
stable orientation during the motion.  

 
Fig. 1: Resultant aerodynamic force and moment acting on 

a body with angular velocity  
 

 
Fig. 1 shows the aerodynamic forces and moment 

acting on the irregularly shaped body (with a center 
of mass cm), and the vector of angular velocity the 
direction of which is located arbitrarily in the space. 

Work of moment as a consequence of 
aerodynamic forces can be written as:  

 

𝑊𝑟𝑜𝑡 = ∫ (𝑀⃗⃗⃗(𝑎𝑒𝑟𝑜) ⋅ 𝑛⃗⃗) 𝜔𝑑𝑡 = ∫ (𝑀⃗⃗⃗(𝑎𝑒𝑟𝑜) ⋅ 𝑛⃗⃗) 𝑑𝜑
𝜑1 

𝜑0

𝑡1

𝑡0
     (1) 

 

aerodynamic moment from (1) is: 
 

𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 = 𝑀𝑎𝑒𝑟𝑜−𝑥
𝑖 + 𝑀𝑎𝑒𝑟𝑜−𝑦𝑗 + 𝑀_(𝑎𝑒𝑟𝑜 − 𝑧)𝑘⃗⃗                (2) 

 
while relation for unit vector for angular velocity 
axis is: 
 

𝑛⃗⃗ = cosα i⃗ + 𝑐𝑜𝑠𝛽 𝑗 + 𝑐𝑜𝑠𝛾 𝑘⃗⃗.                   (3) 
 

In (3) α, β and γ are angles between the direction 
of angular velocity vector and axes x, y and z, 
respectively. For angles α, β and γ following equation 
holds:  
 
cos2 𝛼 + cos2 𝛽 + cos2 𝛾 = 1.                   (4) 
 

Angles α, β and γ are determined using 
expression: 

 

𝑐𝑜𝑠𝛼 =
𝜔𝑥

𝜔
, 𝑐𝑜𝑠𝛽 =

𝜔𝑦

𝜔
, 𝑐𝑜𝑠𝛾 = 𝜔𝑧/𝜔,                                (5) 

 
where angular velocity magnitude is: 
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𝜔 = √(𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2).                                     (6) 

 
Based on (1)–(3), mechanical work of the 

aerodynamic moment can now be written as: 
 

𝑊𝑟𝑜𝑡 = ∫ (𝑀𝑎𝑒𝑟𝑜−𝑥𝑐𝑜𝑠𝛼 + 𝑀𝑎𝑒𝑟𝑜𝑐𝑜𝑠𝛽 + 𝑀𝑎𝑒𝑟𝑜𝑐𝑜𝑠𝛾)𝑑𝜑
𝜑1 

𝜑0
,  

                 (7) 

or approximately using expression: 
 

𝑊𝑟𝑜𝑡 ≈ ∑ (𝑀𝑎𝑒𝑟𝑜𝑥𝑖𝑐𝑜𝑠𝛼𝑖 + 𝑀𝑎𝑒𝑟𝑜𝑦𝑖𝑐𝑜𝑠𝛽𝑖 +𝑆
𝑖=1

𝑀𝑎𝑒𝑟𝑜𝑧𝑖𝑐𝑜𝑠𝛾𝑖) ∆𝜑,   

                       (8) 
 

where S = (φ1- φ0)/φ. Angles φ1 and φ0 are angles 
of two orientations when aerodynamic moments are 
negligible i.e., if a coordinate system is set so that φ0 
= 0, then φ1 = . 

An analogy with the rotating pendulum (Fig. 2) 
can be used here. The pendulum in Fig. 2 is 
schematically shown in two different positions 
where the moment is zero, for the following angles: 
φ0 = 0 and φ1 = . Thus, the integration angle is φ1- 
φ0 = . However, in the case of the fragment motion, 

neither 𝐹⃗𝑎𝑒𝑟𝑜, nor 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 is constant in direction or 
magnitude. 

 

 
Fig. 2: Schematic representation of the pendulum in two 

different positions where the moment is zero 
 

In order to estimate the work of the aerodynamic 
moment from the expression (8), it is necessary to 
know the moment components for various body 
orientations and the position of angular velocity axis 
(using angles α, β and γ). The aerodynamic moment 
components are determined using numerical 
simulations for different body orientations, for 
angles of 0° to 180°, with an increment of rotation of 
15°. When turned into radians, the initial orientation 
of the body corresponds to the angle φ0 = 0, and the 
last orientation of the body corresponds to the angle 

φ1 = , similar to the schematic diagram of the 
pendulum in Fig. 2. 

The position of angular velocity axis (Fig. 1) 
depends on angles α, β and γ, and they can be 
assumed in calculations. More precisely, two of these 
three angles can be assumed, and the third is 
calculated from the expression (4). 

The kinetic energy of the body generally consists 
of translational and rotational components. In this 
case we are interested in the kinetic energy of 
rotation of the body: 
 

𝐸𝑘
𝑟𝑜𝑡 =

1

2
𝐼𝜁𝜔2,                     (9) 

 

where 𝐼𝜁  is the moment of inertia of the body for the 

instantaneous axis - in the direction of the angular 
velocity. Since the position of the instantaneous axis 
constantly changes, I is variable, so it is more 
practical to express the kinetic energy using the 
moments of inertia for axes that are bound and 
together with the body move. If the origin of such a 
moving system, Oxyz, is adopted in the stationary 
point O, then the expression (9) can be written in the 
form: 
 

𝐸𝑘
𝑟𝑜𝑡 =

1

2
(𝐼𝑥𝜔𝑥

2 + 𝐼𝑦𝜔𝑦
2 + 𝐼𝑧𝜔𝑧

2 − 2𝐼𝑥𝑦𝜔𝑥𝜔𝑦 − 2𝐼𝑥𝑧𝜔𝑥𝜔𝑧 −

2𝐼𝑦𝑧𝜔𝑦𝜔𝑧),                   (10) 

 

where x, y and z are projections of the current 
angular velocity on Oxyz system, while Ix, Iy, Iz, Ixy, Ixz, 
and Iyz are moments of inertia of the body for the 
Oxyz system. Expression (10) can also be written in 
the following form: 

 

𝐸𝑘
𝑟𝑜𝑡 =

1

2
𝜔2 (𝐼𝑥 cos2 𝛼 + 𝐼𝑦 cos2 𝛽 + 𝐼𝑧 cos2 𝛾 −

2(𝐼𝑥𝑦 cos 𝛼 cos 𝛽 + 𝐼𝑥𝑧 cos 𝛼 cos 𝛾 + 𝐼𝑦𝑧 cos 𝛽 cos 𝛾)).    (11) 

 
If axes Oxyz are principal axes of inertia, then 

moments Ixy = Ixz = Iyz = 0, so (11) can be reduced to: 
 

𝐸𝑘
𝑟𝑜𝑡 =

1

2
𝜔2(𝐼𝑥 cos2 𝛼 + 𝐼𝑦 cos2 𝛽 + 𝐼𝑧 cos2 𝛾).                (12) 

 
The moments of inertia of the irregularly shaped 

body for coordinate axes x, y and z (bound to the 
body) can be determined in the CAD software, based 
on the three-dimensional body model. 

The body will rotate continuously during the 
flight if the following condition is met: 

 
𝐸𝑘

𝑟𝑜𝑡 > |𝑊𝑟𝑜𝑡|.                   (13) 
 

In (13), 𝑊𝑟𝑜𝑡 and 𝐸𝑘
𝑟𝑜𝑡are given by (8) and (11). 

Since part of the kinetic energy is dissipated with 
every rotation, the condition (13) should be satisfied 
for each subsequent rotation. Therefore, the 
condition of continuous rotation during flight is: 
 

½ 𝜔2 (𝐼𝑥 cos2 𝛼 + 𝐼𝑦 cos2 𝛽 + 𝐼𝑧 cos2 𝛾 −

2(𝐼𝑥𝑦 cos 𝛼 cos 𝛽 + 𝐼𝑥𝑧 cos 𝛼 cos 𝛾 + 𝐼𝑦𝑧 cos 𝛽 cos 𝛾))>   (14) 

|∑ (𝑀𝑎𝑒𝑟𝑜𝑥𝑖 cos 𝛼𝑖 + 𝑀𝑎𝑒𝑟𝑜𝑦𝑖 cos 𝛽𝑖 + 𝑀𝑎𝑒𝑟𝑜𝑧𝑖 cos 𝛾𝑖) ∆𝜑𝑆
𝑖=1 |, 
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where α, β and γ can be considered constant for a 
single rotation, and S = (φ1- φ0)/φ.  

The minimum angular velocity required for 
continuous rotation can be finally written as: 
 

𝜔min  = √
(2|𝑊𝑟𝑜𝑡|)

𝐼𝜁
.                   (15) 

 
It is possible to estimate the minimum number of 

revolutions of the body during the flight due to the 
initial kinetic energy of rotation: 
 

𝑛 = [
𝐸𝑘

𝑟𝑜𝑡

|𝑊𝑟𝑜𝑡|
],                   (16) 

 

where Ekrot is initial kinetic energy of the rotation, 
and the Wrot work of a moment for rotation between 
the two stationary orientations, while the symbol [ ] 
indicates that the first lower whole number is taken. 
Here it is assumed that the moment function changes 
slightly between the two adjacent rotations so that 
the work of moment remains approximately the 
same. 

After the decrease of the kinetic energy of 
rotation below the threshold of energy for a full 
rotation, the body can reach the state of oscillation 
around the center of mass, with the oscillation 
amplitude decreasing due to the dissipation of 
kinetic energy. Parallel with this, rotational vibration 
around other axes can occur due to the aerodynamic 
moment, so the body can still tumble and rotate 
within a specific spatial angle during the flight. 

3. Numerical simulations 

Instead of simulating the fragment spatial motion, 
the fragment was considered stationary and the flow 
around it was analyzed. The reason for this approach 
is the extremely high requirements for large solution 
domain, and therefore, high requirements for 
computer resources if the spatial motion of the 
fragment are considered.  

In order to estimate the components of the 
aerodynamic moment (required in expression 8) for 
an irregularly shaped body, numerical simulations of 
flow around an irregularly shaped body were 
performed in the Ansys Fluent CFD software 
package. 

Methods of numerical simulations, using 
computer fluid dynamics, are an important aspect of 
modern research as they are complemented by 
experiments and analytical models, thus reducing 
total time and labor costs. 

Generally speaking, basic flow equations are 
represented by the equation of continuity, the 
momentum equation and the energy equation 
(Anderson, 1991). 

The method of numerical simulations of air flow 
around an irregularly shaped body consisted of the 
following: 
 

a. Digitalization of the body model using real 
fragments 

b. Physical domain discretization 
c. Initial and boundary conditions 
d. Characterization of materials 
e. Solver and turbulence model selection 
f. Aerodynamic moment estimation (UDF Script) 

3.1. Digitalization of the body model 

The irregularly shaped body with which the 
numerical simulations were performed for different 
orientations is presented in Fig. 3.  

Since the 3D scanner was not available, a body 
was digitized using CAD software. A 3D scanner will 
digitize the body more precise, but CAD technique 
can also very useful when scanner is not available. 

The three dimensional model of the body (Fig. 4) 
is made using CAD methods, modeling a real body in 
three projections, and then manipulating it: 
extruding in the direction of three coordinate axes, 
connecting extruded projections and determining 
their cross section as the final 3D model. 

 

 
Fig. 3: Photograph of body with irregular shape (fragment 

from high explosive projectile) 
 

 
Fig. 4: Digitized model of body with irregular shape in 

different projections 

3.2. Physical domain discretization 

Since these bodies have a stochastic and irregular 
shape, it would be very difficult to define their 
geometry using point by point technique in one of 
the older preprocessors such as Gambit. 
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For this reason, Ansys Design Modeler was used, 
which enables the introduction of finished CAD 
models. 

The mesh of the numeric model was unstructured 
(Fig. 5), consisting of polyhedral elements: 625689 
cells. The mesh was especially fine around the body 
where high gradients are expected (Fig. 5) to reduce 
the numerical error. 

The Ansys Fluent coordinate system was placed 
in the body center of mass, with the initial 
orientation of the body adopted to coincide with the 
principal axes of inertia. 

 

 
Fig. 5: A larger view of the mesh around the body in a 

numerical model 

3.3. Initial and boundary conditions 

In the simulations, the velocity of fluid flow 
around the body was 3 Ma. This speed corresponds 
to the initial velocity of the fragments generated by 
the detonation of high-explosive projectiles. 

The velocity vector (Fig. 6) was directed in the 
positive direction of axis X of the coordinate system 
set in the body center of mass. The coordinate 
system in the initial position of the body coincides 
with the principal axes of inertia (defined in CAD and 
exported as .iges format document, together with the 
model). 

 

 
Fig. 6: Schematic position of the body in numerical 

simulations 
 

Numerical simulations for 14 body orientations 
were performed: 0, 15, 30, 45, 60, 75, 90, 
105, 120, 135, 150, 165  and 180. Fig. 6 shows 
the schematic position of the body in numerical 
simulations. 

Since the flow velocity around the body is always 
supersonic at the beginning of its flight, significant 
effects of compressibility and viscosity, as well as 
shock waves occur. 

For the compressible and isentropic (reversible 
adiabatic thermodynamic process) flow of the ideal 
gas, expressions from the compressible fluid 
mechanics (Fluent, 2011) are used: 
 

𝑝0

𝑝
= (1 +

𝛾−1

2
𝑀𝑎

2)

𝛾

𝛾−1
,                  (23) 

𝑇0

𝑇
= 1 +

𝛾−1

2
𝑀𝑎

2,                   (24) 

 
where are: p0 – isentropic (stagnation) pressure, p - 
static pressure, T0 - isentropic (stagnation) 
temperature, T - static temperature,  - adiabatic 
exponent (ratio of specific heats). The value of  for 
the air is 1.4. 

At the end of the domain, so called Pressure 
Farfield condition was used, which is commonly 
used in Fluent in aerodynamic simulations, where 
the effect of compressibility is dominant. 

The No Slip condition is defined on the surface of 
the body, which means that the relative flow velocity 
on the surface of the body is equal to zero. 

Boundary condition - the wall is used in case 
when the viscous effects cannot be ignored and is 
relevant to most fluid flow situations (Fluent, 2011). 

3.4. Characterization of the resistive medium 

Air is modeled as homogeneous, isotropic, ideal 
gas with pressure-temperature dependent density , 
specific heat Cp, thermal conductivity k and dynamic 
viscosity . 

During the high-velocity motion of the fragment, 
the pressure nearby the fragment boundary can 
reach values multiple times higher than the 
atmospheric pressure which results in significant 
local change in density.  

Fluent used following form of ideal gas law for 
compressible flows (Fluent, 2011): 
 

𝜌 =
𝑝𝑎𝑡+𝑝

𝑅

𝑀
𝑇

,                   (21) 

 
where: pat – atmospheric pressure, p - relative 
pressure, R - universal gas constant, M - molar mass, 
T - temperature determined from the equation of 
energy. For material (ideal gas) following 
parameters were used: specific heat Cp = 1006.43 J / 
kgK, thermal conductivity k = 0.0242 W/mK, and the 
molar mass M = 28.966 kg/kmol. The influence of 
temperature T on the dynamic viscosity of air can be 
significant for large variations in temperature. It was 
determined by the Sutherland model (Fluent, 2011): 

 

𝜇 =
𝜇0(

𝑇

𝑇0
)

3
2(𝑇0+𝑆)

𝑇+𝑆
,                   (22) 

 

where 0 - dynamic viscosity, T0 - reference 
temperature, S - Sutherland constant. For air 
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following values were used: 0 = 1,71610-5 kg/ms, 
T0 = 273,11 K, and S = 110,56 K (Fluent, 2011).  

3.5. Solver and turbulence model selection 

Solver settings include solver type selection, 
discretization scheme, solution initialization, and 
convergence monitoring. 

There are two basic types of solver in Fluent 
(Fluent, 2011): pressure based and density-based 
solver. According to the recommendation (Fluent, 
2011) for use with compressible flows, a density-
based solver was selected in the simulations, where 
mass, flow and energy equations are determined as 
the Navier-Stokes equation system in integral form 
for an arbitrary control volume. 

Using the Navier-Stokes equation in the density-
based solver in certain cases (when there is a large 
difference between the velocity of the flow and the 
local sound velocity) results in lower convergence, 
and in this case the preconditioning technique 
(Fluent, 2011) is used.  

By determining the Reynolds number for the air 
flow around the body (kinematic viscosity of air is 
1,5110-5 m2/s for density of 1,2 kg/m3) for the 
velocity of the flow of 3 Mach, the Re number 
exceeds 105 , which means that the flow around the 
body with this velocity is prevalently turbulent, 
although the time of movement of this body through 
the atmosphere is relatively short. 

According to the recommendations (Fluent, 
2011), the Spalart-Allmaras turbulence model was 
used in the simulations. This is a relatively new 
physical model of turbulence. It has been developed 
specifically for aerodynamic applications (especially 
in the aerospace industry) and has proven to be 
effective for the boundary layers with high pressure 
gradients, and has been particularly effective for 
transonic flows around the aero profiles, including 
flows with significant separation of the boundary 
layer (Pope, 2000). 

The ever-increasing popularity of the Spalart-
Allmaras model contributed to the rapid 
implementation of these models on unstructured 
meshes, unlike the classic aerodynamic turbulence 
models such as Baldwin-Lomax or Johnson-King 
(Anderson, 1991, Pope 2000, Rumsey, 2012). 

3.6. Aerodynamic moment estimation (UDF 
Script) 

A program (in C programming language) was 
written that determines the aerodynamic forces and 
moments for all three coordinate axes. For each cell 
on the body, the forces are determined in three 
directions, as follows: 
 
𝐹𝑥 𝑖 = 𝑝𝑆𝑥 𝑖 ,  𝐹𝑦 𝑖 = 𝑝𝑆𝑦 𝑖 , 𝐹𝑧 𝑖 = 𝑝𝑆𝑧 𝑖 ,                 (25) 

 

where: Fxi, Fyi i Fzi- force components for each body 
cell, ps - pressure on the surface of the wall, and Sxi, 
Syi and Szi - the elementary exposed body surfaces 
vertical to the respective coordinate axes. Then, the 

components of the total pressure force Fx, Fy and Fz 
are determined: 

 

𝐹𝑥 = ∑ 𝐹𝑥 𝑖
𝑛
𝑖=1 , 𝐹𝑦 = ∑ 𝐹𝑦 𝑖

𝑛
𝑖=1 , 𝐹𝑧 = ∑ 𝐹𝑧 𝑖

𝑛
𝑖=1 .                (26) 

 

The aerodynamic moment is determined for each 
cell of the discrete model as the vector product of the 
cells vector radiuses and the aerodynamic force 
acting on that cell: 

 

𝑀⃗⃗⃗ = ∑ 𝑟𝑖 × 𝐹⃗𝑖
𝑛
𝑖=1 .                   (27) 

 

The components of moment 𝑀⃗⃗⃗ for each cell of the 
body using the function NV_CROSS (ri, Fi) are 
determined by the program, and then total moment 
for all three axes is obtained by summing all 
elementary moments. The moment of the forces 
tangential to the surface ("friction forces") of each 
boundary cell is neglected with respect to the 
moment due to the dominant pressure forces. Solver 
of Ansys Fluent is set by dynamically loading the 
developed UDF (user defined function) program and 
executing the commands entered into it. 
Aerodynamic forces and moments are determined 
using UDF script, specifically using the 
DEFINE_EXECUTE_AT_END command (general type 
macro executed in the simulation) for each cell of the 
model. The UDF program is written so that the 
results are printed as a table in a separate .txt 
document. 

3.7. Validation of numerical model 

Validation is a process of estimating errors and 
uncertainties of a numerical model by comparing 
obtained results with available experimental data. 
Validation is final stage of model checking process, 
which determines degree of agreement of the 
adopted model with the real physical phenomenon 
investigated in the analysis (Tu et al., 2008). 

The adopted numerical model in operation was 
verified with experimental data for the cube. 
Verification was performed by comparing the 
coefficient of drag in the simulation and for available 
experimental data. The cube is chosen because 
experimental data on drag coefficients are available 
for it, and its geometry is known. 

For comparison, the experimental data 
(Schamberger, 1971) were used for the different 
positions of the cubes (Fig. 7) during the airflow 
around them: when the flow is facing a cube side 
(flat-on orientation) and when the flow is facing the 
cube edges (edge-on orientation). 

Based on the obtained results on forces, moments 
and exposed surfaces (reference area), for different 
values of Mach numbers, the values of the CD (cube 
drag coefficient) is determined using formula 
(Anderson, 1991): 

 

𝐶𝐷 =
𝐹𝐷

𝑞𝑆
  

 

where: FD – drag force in the direction of velocity 
vector, S - reference area (projection of total body 
surface perpendicular to the velocity vector, also 
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determined in UDF program). Dynamic pressure is 
defined by expression 𝑞 = 0,5 𝑞𝑣2. 
 

 
Fig. 7: Flat-on and edge-on flow on cube (Schamberger, 

1971) 

Numerical simulations were carried out in such a 
way that the same conditions apply to experimental 
tests by Schamberger. The simulations were 
performed in two different positions of fluid flow 
over cubes, with the same Ma numbers for which the 
Schamberger tests were performed. In the process of 
validation of results, the discretization of space and 
time, solver and initial and boundary conditions in 
the case of simulation of the airflow around 3D cube 
models were the same as in the numerical model of 
flow around the 3D model of the irregularly shaped 
body. Fig. 8 gives a comparison of numerical 
simulation results with experimental data 
(Schamberger, 1971) for the cube for flat-on and 
edge-on orientation of cubes. The difference 
between values of the CD from simulations and 
experiments are smaller than 10%. 

 

  
Fig. 8: Comparison of drag coefficients values from simulations and experimental data (Schamberger, 1971) for a cube 

 

4. Results and discussion 

In Fig. 9 and Fig. 10, the pressure field and 
streamlines are represented for flow around 
irregularly shaped body. 

The pressure field (Fig. 9) around the body is 
complex and nonsymmetrical because the body is 
irregularly shaped with a large number of edges and 
dents. An overpressure zone is present in front of the 
body, while an under pressure zone appears behind 
it. Of great importance to the movement of the body 
of this velocity through is the occurrence of shock 
waves. Namely, the velocity of 3 Ma implies 
pronounced shock waves around the body. In this 
case, the shock wave is curved and usually called 
bow shock wave since the body is blunt. Generally 
speaking, the shape of the bow shock wave and the 
complete field of flow between the bow waves and 
the body depend on the Mach number and size and 
shape of the body. Bow shock waves significantly 
increase the drag of supersonic velocity bodies, 
which is, for example, used in the design of the 
Apollo capsule that required a high drag to prevent 
the capsule from burning when entering the 
atmosphere. Solving problems with bow shock 
waves is complex and regularly requires the use of 
numerical simulation methods (Anderson, 1991). 

Regarding streamlines (Fig. 10), the relative 
movement of fluid from the region of high pressure 

to the low pressure region in combination with the 
movement of the fluid in the direction leads to the 
formation of a vortex flow behind the body, 
dissipating energy which significantly increases the 
drag. Vortices are usually in mutual interaction, they 
are movable and can exchange energy. 

It is important to notice that the simulation 
considers that the fragment is stationary, but the 
surrounding medium is in motion. It is not exactly 
the same situation as in the case when the fragment 
is in motion through the stationary medium. 
However, the relative motion of the surrounding 
medium with respect to the fragment is the same. 
This means that the pressure field and the 
streamline field will be the same as if the fragment is 
in motion, meaning that all values of the surface 
forces and resulting moments can be used to 
estimate motion of the fragment through the 
stationary medium.  

This approach provided the possibility to use 
relatively dense mesh in the relatively small solution 
domain around the fragment. Otherwise, a large 
solution domain would be needed, which would 
result in a very coarse mesh that cannot give 
sufficiently accurate results. 

In order to estimate minimal angular velocity 
required for continuous rotation, the results of 
numerical simulations and analytical expressions (1) 
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- (16) were used. The following assumptions have 
been adopted: 
 

 The analysis refers to body with mass of 52.5g 
because simulations have been performed with 
this body. 

 Aerodynamic moment components are 
determined by numerical simulations for several 
orientations of a body (0 - 180, with a 15 
increments, Table 2). 

 Coordinate axes bound to the body are principal 
axes (these are determined in CAD). 

 Moments of inertia for axes bound to the body are 
determined using CAD software (Table 1), and 
based on them moments of inertia for body for 
current axis of rotation  are determined. 

 It is assumed that the angles of the current or 
rotation of the body are the same (α = β = γ). Based 
on the expression (4), that angle is 54.7°. These 
angles can be set arbitrary, with the two angles 
being assumed, and the third being defined by the 
expression (4). Since the orientation of the initial 
rotation axis can be any axis through the center of 
mass, due to the nature of the impulse forces that 
cause the initial rotation of the body, then this 
analysis is not limited to any particular axis of 
initial rotation. However, the numerical simulation 
has specific given initial conditions. 

 It is assumed that the initial velocity of the body is 
3 Mach (equivalent to initial velocity of fragments 
from some HE projectiles), so the moment 
component values obtained for velocity 3 Mach are 
taken. 

 It is assumed that, due to the intense gyroscopic 
effect, there will be no significant rotation around 
the other axis that significantly deviates from the 
axis of initial (dominant) rotation. Beside the 
significant gyroscopic effect, this assumption is 
further justified by the fact that the time frame of 
the body movement, before it hits an obstacle, is 
relatively short, so that the body does not have 
enough time to develop any significant rotation 
about any axis different than the axis of the initial 
rotation. 
 

In Table 1, moments of inertia for principal axes 
(coordinate system bound to the body) of the body 

with a mass of 52.5g and moments of inertia for the 
current axis of rotation  are given. 

 

 
Fig. 9: The pressure field around the body (in the plane 
passing through the center of mass), flow velocity 3 Ma 
 

 
Fig. 10: Streamlines around the body, flow velocity 3 Ma 

 

Table 1: Moments of inertia for a system bound to the body and current axis of rotation  
Mass of body (g) Principal moments of inertia (kgmm2) Moment of inertia for current axis of rotation (kgmm2) 

 Ix Iy Iz I 
52,51 16,3012 1,0322 16,7081 11,34717 

 

Work of an aerodynamic moment Wrot for a 
rotation between the two stationary orientations is 
determined using the expression (8). Table 2 shows 
data for the aerodynamic moment components and 
the calculated work performed by these moments 
for the angle of integration from 0 to . 

As can be seen from Table 2, single work of 
moment (for rotation angle 15) can be negative or 
positive. It is negative when the aerodynamic 
moment contradicts the initial rotation of the body, 

and positive when the moment further enhances the 
initial rotation of the body. Based on the data of total 
work of moment between the two stationary 
orientations (Table 2), it is now possible using the 
expression (15) to estimate the minimum initial 
angular velocity required for continuous rotation of 
the body.  

For this particular case (mass of the body was 
52.5g), obtained minimum angular velocity required 
for continuous rotation of the body is 112,4 rad/s 

1.127e+006 
1.059e+006 
9.908e+005 
9.228e+005 
8.548e+005 
7.868e+005 
7.188e+005 
6.508e+005 
5.828e+005 
5.148e+005 
4.468e+005 
3.788e+005 
3.108e+005 
2.428e+005 
1.748e+005 
1.067e+005 
3.873e+004 
-2.927e+004 
-9.728e+004 

[Pa] 

Pressure around 
the body 
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(17,9 rev/s). Thus, if the initial angular velocity of 
the body is greater than 18 rev/s, the body rotation 
(instability) will occur immediately, since the body 
will rotate through the stabilization zone (similar to 
the pendulum in Fig. 2 which passes through the 

stabilization zone if the initial angular velocity 
magnitude is sufficient such that rotational kinetic 
energy is higher than the absolute amount of work 
done by the moment about the joint). 

 
Table 2: Data for aerodynamic moment components and calculated work performed by these moments (for 3 Mach) 

Orientations of a body during rotation Maero-xi (Nm) Maero-yi (Nm) Maero-zi (Nm) Wrot (J) 

0 0,23537 0,61676 -0,11281 0,11175 

15 0,12741 0,64165 -0,69244 0,01158 

30 -0,02586 0,48013 -0,70114 -0,03731 

45 -0,04293 0,31789 -0,48161 -0,03123 

60 0,02618 0,34644 -0,90607 -0,08063 

75 0,01400 0,39307 -1,17532 -0,11612 

90 -0,02258 0,39088 -0,76840 -0,06048 

105 -0,09086 0,33929 -0,48711 -0,03608 

120 -0,16673 0,34140 -0,66581 -0,07424 

135 -0,15880 0,25446 -0,29548 -0,03020 

150 -0,02646 0,18754 0,25689 0,06318 

165 0,09770 0,19669 0,40270 0,10536 

180 0,20285 0,20592 0,27078 0,10271 
Total work of moment (J)    -0.07171 

 

It is important to note that research on estimate 
of initial angular velocity of fragments from 
detonating warheads is scarce. Recently Norwegian 
researchers (Moxnes et al., 2017) made numerical 
simulations of HE warhead detonation using 
IMPETUS Afea program, where they concluded that 
in their case (fragment with mass of 0,51 g) initial 
angular velocity of fragment was in the order of 23 
000 rad/s (3650 rev/s). So significant angular 
velocity can be imparted to fragments in the initial 
stage of their flight. 

In order to estimate the minimum number of 
body revolutions due to the initial kinetic energy of 
rotation, the initial angular velocity of the body of 
200 rev/s was assumed. Initial angular velocity 
estimate given here is rather conservative since, as 
we mentioned, there are reports that initial angular 
velocity of HE fragments can be in order of around 
23 000 rad/s (Moxnes et al., 2017). 

Using Eq. 16, where the initial kinetic energy of 
rotation (Eq. 12) and work of the moment during the 
rotation between two stationary orientations (Eq. 8) 
are determined, we obtained minimum 125 
rotations of the body around the center of mass due 
to the initial angular velocity. Since initial angular 
velocities of real fragments are much higher (Moxnes 
et al., 2017), it is reasonable to conclude that 
fragments could rotate due to the initial disturbance 
(initial angular velocity) during its whole trajectory, 
since travel time of these bodies is usually very short 
due to their high velocities.  

It is interesting also to analyze the time at which 
the body will rotate (rotation period) and at what 
distance from the center of the explosion. Rotation 
period can be determined using known formula: 
 

𝑇𝑟𝑜𝑡 =
2𝜋

𝜔0
.                   (30) 

 

In the case of an assumed initial angular velocity 
of 200 rad/s, the body rotation period is 31.4 ms. If 
the assumed initial angular velocity is 2000 rad/s, 
the body rotation period would be 3.14 ms. The 

distance of a body for a full rotation can be 
determined using the expression: 
 

𝑥1𝑟𝑜𝑡 ≈ 𝑇𝑟𝑜𝑡𝑣𝑥0 ≈
2𝜋

𝜔0
𝑣𝑥0,                  (31) 

 

assuming that the horizontal component of the initial 
velocity is vx0. For an initial velocity of 1000 m/s and 
an initial angular velocity of 200 rad/s, the 
(approximate) distance that the fragment travels for 
one full rotation is around 31,4 m. If the initial 
angular velocity was, for example, 2000 rad/s, then 
the distance traveled is 3,14m during a single 
rotation. One of the possible criteria for comparing 
the translational and rotational component of the 
motion of the fragment is the ratio of the kinetic 
energy of the translation and the kinetic energy of 
the rotation: 
 

ℎ =
𝐸𝑘

𝑡𝑟𝑎𝑛𝑠

𝐸𝑘
𝑟𝑜𝑡 =

𝑚𝑣2

𝐼𝜁𝜔2
,                   (32) 

 
where I is moment of inertia around arbitrary axis. 
If the values of the kinetic energy of the translation 
and the kinetic energy of rotation are compared for a 
given fragment (m=52,5g, v0 = 1000 m/s, I = 
11,3472 kgmm2, 0 = 200 rad/s) than 𝐸𝑘

𝑡𝑟𝑎𝑛𝑠 =
26250J, and 𝐸𝑘

𝑟𝑜𝑡 = 0,223J, which means that the 
kinetic energy of translation for this case is 115668 
times greater than the kinetic energy of the rotation 
of the fragment. If the initial angular velocity of the 
fragment is, for example, 2000 rad/s, then the ratio h 
= 1157.  

If the body still does not hit the obstacle (the 
flight to the obstacle is usually so short that the body 
does not at all reach a stage where its angular 
velocity will fall to a negligible value), after a body 
tumbling due to a dominant initial disturbance 
(initial angular velocity), temporary body 
stabilization can occur with oscillation about a stable 
orientation (oscillation around the center of mass), 
or (most likely) further rotation and tumbling of the 
body in the case of extended time intervals due to 
the translational velocity drop. 
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5. Conclusion

The study evaluated initial instability of the 
irregularly shaped body by analyzing the minimum 
angular velocity required for continuous rotation 
during motion. This angular velocity is estimated 
based on moment components (obtained by 
numerical simulations) that acts on the body with an 
irregular shape and the suggested method that takes 
into account the work of the aerodynamic moment 
and the initial kinetic energy of the rotation. 

After the decrease of the kinetic energy of 
rotation, the body can get into the state of oscillation 
(around the center of mass) within the stability zone, 
within which the amplitude of the rotational 
oscillation decreases due to further dissipation of the 
kinetic energy, resulting in the final stable 
orientation of the body during the flight.  

6. Future work

Further steps in the path of this work should 
contain the following: 

 Stability zone determination regarding fragment
orientation during motion through resistive
environment,

 Determination of the center of pressure and
direction of the resultant force vector for
irregularly shaped bodies,

 Determination of stability conditions on specific
fragment orientation where the aerodynamic
moment is zero,

 Estimation of the fragment trajectory using
aerodynamic forces for real fragments,

 Numerical simulation of irregularly shaped bodies
using 6DOF solver.
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